Detachable fiber optic tips for use in thulium fiber laser lithotripsy.
نویسندگان
چکیده
The thulium fiber laser (TFL) has recently been proposed as an alternative to the Holmium:YAG (Ho:YAG) laser for lithotripsy. The TFL's Gaussian spatial beam profile provides higher power transmission through smaller optical fibers with reduced proximal fiber tip damage, and improved saline irrigation and flexibility through the ureteroscope. However, distal fiber tip damage may still occur during stone fragmentation, resulting in disposal of the entire fiber after the procedure. A novel design for a short, detachable, distal fiber tip that can fit into an ureteroscope's working channel is proposed. A prototype, twist-lock, spring-loaded mechanism was constructed using micromachining methods, mating a 150-μm-core trunk fiber to 300-μm-core fiber tip. Optical transmission measuring 80% was observed using a 30-mJ pulse energy and 500-μs pulse duration. Ex vivo human calcium oxalate monohydrate urinary stones were vaporized at an average rate of 187 μg/s using 20-Hz modulated, 50% duty cycle 5 pulse packets. The highest stone ablation rates corresponded to the highest fiber tip degradation, thus providing motivation for use of detachable and disposable distal fiber tips during lithotripsy. The 1-mm outer-diameter prototype also functioned comparable to previously tested tapered fiber tips.
منابع مشابه
Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers.
Fiber-optic attraction of urinary stones during laser lithotripsy may be exploited to manipulate stone fragments inside the urinary tract without mechanical grasping tools, saving the urologist time and space in the ureteroscope working channel. We compare thulium fiber laser (TFL) high pulse rate/low pulse energy operation to conventional holmium:YAG low pulse rate/high pulse energy operation ...
متن کاملHollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy.
The use of thulium fiber laser (TFL) as a potential alternative laser lithotripter to the clinical holmium:YAG laser is being studied. The TFL's Gaussian spatial beam profile provides efficient coupling of higher laser power into smaller core fibers without proximal fiber tip degradation. Smaller fiber diameters are more desirable, because they free up space in the single working channel of the...
متن کاملVestibular Schwannomas Microsurgery Assisted by Flexible Hand-Held 2 micro-Thulium-Fiber Laser
Background: Vestibular Schwannoma (VS) is one of the skull base tumors originating from vestibular portion of eighth cranial nerve. Recently, 2 micro-Thulium laser is used in the surgery of some intracranial tumors. Objectives: Assessing the efficacy of 2 micro-Thulium flexible hand-held laser fiber (RevolixjrÒ) in microsurgical removal of VS. Materials and Methods: This retrospect...
متن کاملThulium fiber laser lithotripsy using tapered fibers.
INTRODUCTION The Thulium fiber laser has recently been tested as a potential alternative to the Holmium:YAG laser for lithotripsy. This study explores use of a short taper for expanding the Thulium fiber laser beam at the distal tip of a small-core fiber. METHODS Thulium fiber laser radiation with a wavelength of 1,908 nm, 10 Hz pulse rate, 70 mJ pulse energy, and 1-millisecond pulse duration...
متن کاملComparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects.
The holmium:YAG (Ho:YAG) laser lithotriptor is capable of operating at high pulse energies, but efficient operation is limited to low pulse rates (∼10 Hz) during lithotripsy. On the contrary, the thulium fiber laser (TFL) is limited to low pulse energies, but can operate efficiently at high pulse rates (up to 1000 Hz). This study compares stone ablation threshold, ablation rate, and retropulsio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2013